Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 80
1.
Sci Total Environ ; 920: 170609, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38316296

Spatial and temporal variations of mercury (Hg) concentrations, enrichment, and potential ecological risks were studied in a suite of lead-210 (210Pb) dated sediment cores from 13 Wider Caribbean Region coastal environments. Broad variability of Hg concentrations (19-18761 ng g-1) was observed, encompassing even background levels (38-100 ng g-1). Most Hg concentration profiles exhibited a characteristic upward trend, reaching their peak values in the past two decades. Most of the sediment sections, showing from moderately to very severe Hg enrichment, were found in cores from Havana Bay and Sagua River Estuary (Cuba), Port-au-Prince Bay (Haiti), and Cartagena Bay (Colombia). These were also the most seriously contaminated sites, which can be considered regional Hg 'hotspots'. Both Havana Bay and Port-au-Prince Bay reportedly receive waste from large cities with populations exceeding 2 million inhabitants, and watersheds affected by high erosion rates. The records from the Sagua River Estuary and Cartagena Bay reflected historical Hg contamination associated with chloralkali plants, and these sites are of very high ecological risk. These results constitute a major contribution to the scarce regional data on contaminants in the Wider Caribbean Region and provide reference information to support the evaluation of the effectiveness of the Minamata Convention.

2.
Environ Sci Process Impacts ; 25(8): 1347-1364, 2023 Aug 16.
Article En | MEDLINE | ID: mdl-37401332

Microplastics (MPs) are emerging pollutants of global concern due to their pervasiveness, high sorption ability for persistent organic pollutants (POPs) and direct and indirect toxicity to marine organisms, ecosystems, as well as humans. As one of the major coastal interfaces, beaches are considered among the most affected ecosystems by MPs pollution. The morphological characteristics of MPs (pellets and fragments) collected from four beaches along the Tunisian coast and sorbed POPs, including polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs), were investigated in this study. The results showed that the MPs varied greatly in color, polymer composition and degradation degree. The color varied from colored to transparent and the most prevalent polymer identified using Raman spectroscopy was polyethylene. Scanning electron microscope (SEM) images exhibited various surface degradation features including cavities, cracks, attached diatom remains, etc. The concentrations of Σ12PCBs over all beaches ranged from 14 to 632 ng g-1 and 26 to 112 ng g-1 in the pellets and fragments, respectively, with a notable presence and dominance of highly-chlorinated PCBs such as CB-153 and -138. Among the OCPs, γ-HCH is the only compound detected with concentrations ranging from 0.4 to 9.7 ng g-1 and 0.7 to 4.2 ng g-1 in the pellets and fragments, respectively. Our findings indicate that MPs found on the Tunisian coast may pose a chemical risk to marine organisms as the concentrations of PCBs and γ-HCH in most of the analysed samples exceeded the sediment-quality guidelines (SQG), especially the effects range medium (ERM) and the probable effects level (PEL). As the first report of its kind, the information gathered in this study can serve as the baseline and starting point for future monitoring work for Tunisia and neighbouring countries, as well as for stakeholders and coastal managers in decision-making processes.


Environmental Pollutants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Biphenyls , Water Pollutants, Chemical , Humans , Ecosystem , Environmental Monitoring/methods , Environmental Pollutants/analysis , Hexachlorocyclohexane/analysis , Hydrocarbons, Chlorinated/analysis , Mediterranean Sea , Microplastics , Persistent Organic Pollutants , Pesticides/analysis , Plastics/analysis , Polychlorinated Biphenyls/analysis , Tunisia , Water Pollutants, Chemical/analysis , Animals
3.
Environ Sci Technol ; 57(14): 5761-5770, 2023 04 11.
Article En | MEDLINE | ID: mdl-36976251

This work quantified the accumulation efficiencies of Hg in cuttlefish, depending on both organic (MeHg) and inorganic (Hg(II)) forms, under increased pCO2 (1600 µatm). Cuttlefish were fed with live shrimps injected with two Hg stable isotopic tracers (Me202Hg and 199Hg(II)), which allowed for the simultaneous quantification of internal Hg accumulation, Hg(II) methylation, and MeHg demethylation rates in different organs. Results showed that pCO2 had no impact on Hg bioaccumulation and organotropism, and both Hg and pCO2 did not influence the microbiota diversity of gut and digestive gland. However, the results also demonstrated that the digestive gland is a key organ for in vivo MeHg demethylation. Consequently, cuttlefish exposed to environmental levels of MeHg could exhibit in vivo MeHg demethylation. We hypothesize that in vivo MeHg demethylation could be due to biologically induced reactions or to abiotic reactions. This has important implications as to how some marine organisms may respond to future ocean change and global mercury contamination.


Cephalopoda , Mercury , Methylmercury Compounds , Water Pollutants, Chemical , Animals , Mercury/analysis , Methylmercury Compounds/metabolism , Methylation , Cephalopoda/metabolism , Aquatic Organisms/metabolism , Water Pollutants, Chemical/analysis
4.
Environ Int ; 172: 107797, 2023 02.
Article En | MEDLINE | ID: mdl-36773563

Microplastics (MPs) in the environment have become a global concern, not only for the physical effects of the plastic particles themselves but also for being vectors of chemical additives. In this context, little is known about the ability of MPs, particularly extruded polystyrene microplastics (XPS-MPs), to release organic chemical additives in the marine environment. In this study, a series of field and laboratory experiments were carried out to determine the leaching behaviour of organic additives including brominated flame retardants from XPS-MPs into seawater. The conducted experiments confirmed a rapid release of bisphenol A (BPA), 2,4,6-tribromophenol (TBP), tetrabromobisphenol A (TBBPA) and hexabromocyclododecane diastereoisomers (α-, ß-, and γ-HBCDD) from the studied MPs followed by a slower rate of release over time. The effects of environmental factors on the leaching rates of these additives were also examined. Increasing Dissolved Organic Matter (DOM) concentrations and the temperature of the seawater enhanced the release of additives by increasing their solubility and polymer flexibility. In contrast, pH tested at 7, 7.5 and 8 was found to have a minor effect on additives leaching; and salinity negatively affected the leaching rate likely due to their reduced solubility and reduced diffusion from the MPs. The present study provides empirical evidence of the behaviour of XPS-MPs as a source of organic additives in the marine environment that merit further investigation.


Flame Retardants , Water Pollutants, Chemical , Polystyrenes/analysis , Plastics , Microplastics , Flame Retardants/analysis , Environmental Monitoring , Water Pollutants, Chemical/analysis
5.
Curr Biol ; 33(5): 990-997.e4, 2023 03 13.
Article En | MEDLINE | ID: mdl-36787746

Food production, particularly of fed animals, is a leading cause of environmental degradation globally.1,2 Understanding where and how much environmental pressure different fed animal products exert is critical to designing effective food policies that promote sustainability.3 Here, we assess and compare the environmental footprint of farming industrial broiler chickens and farmed salmonids (salmon, marine trout, and Arctic char) to identify opportunities to reduce environmental pressures. We map cumulative environmental pressures (greenhouse gas emissions, nutrient pollution, freshwater use, and spatial disturbance), with particular focus on dynamics across the land and sea. We found that farming broiler chickens disturbs 9 times more area than farming salmon (∼924,000 vs. ∼103,500 km2) but yields 55 times greater production. The footprints of both sectors are extensive, but 95% of cumulative pressures are concentrated into <5% of total area. Surprisingly, the location of these pressures is similar (85.5% spatial overlap between chicken and salmon pressures), primarily due to shared feed ingredients. Environmental pressures from feed ingredients account for >78% and >69% of cumulative pressures of broiler chicken and farmed salmon production, respectively, and could represent a key leverage point to reduce environmental footprints. The environmental efficiency (cumulative pressures per tonne of production) also differs geographically, with areas of high efficiency revealing further potential to promote sustainability. The propagation of environmental pressures across the land and sea underscores the importance of integrating food policies across realms and sectors to advance food system sustainability.


Chickens , Salmon , Animals , Seafood , Agriculture , Farms , Aquaculture
6.
Mar Pollut Bull ; 185(Pt B): 114322, 2022 Dec.
Article En | MEDLINE | ID: mdl-36427378

The present study reports the first experimental microplastic-mediated transfer of a key PCB congener into adult specimens of the sea urchin Paracentrotus lividus. Three experiments were conducted to assess whether 14C-PCB-153 adsorbed onto negatively buoyant microplastics (MPs) (500-600 µm) is bioavailable to the sea urchin: (1) exposure to a low concentration of 14C-PCB-153 sorbed onto a high number of virgin MPs ("lowPCB highMP" experiment), (2) exposure to a high concentration of 14C-PCB-153 sorbed onto a relatively low number of virgin MPs ("highPCB lowMP" experiment), and (3) exposure to a low concentration of 14C-PCB-153 sorbed onto a relatively low number of aged MP ("lowPCB lowMP" experiment). Results showed that the transfer of 14C-PCB-153 from MPs to sea urchin tissues occurred in each of the three 15-day experiments, suggesting that MPs located on the seafloor may act as vectors of PCB-153 to sea urchins even during short-term exposure events.


Paracentrotus , Polychlorinated Biphenyls , Animals , Microplastics , Plastics
7.
Environ Res ; 215(Pt 1): 114201, 2022 12.
Article En | MEDLINE | ID: mdl-36057331

The bioaccumulation of mercury (Hg) in marine organisms through various pathways has not yet been fully explored, particularly in cephalopods. This study utilises radiotracer techniques using the isotope 203Hg to investigate the toxicokinetics and the organotropism of waterborne inorganic Hg (iHg) and dietary inorganic and organic Hg (methylHg, MeHg) in juvenile common cuttlefish Sepia officinalis. The effect of two contrasting CO2 partial pressures in seawater (400 and 1600 µatm, equivalent to pH 8.08 and 7.54, respectively) and two types of prey (fish and shrimp) were tested as potential driving factors of Hg bioaccumulation. After 14 days of waterborne exposure, juvenile cuttlefish showed a stable concentration factor of 709 ± 54 and 893 ± 117 at pH 8.08 and 7.54, respectively. The accumulated dissolved i203Hg was depurated relatively rapidly with a radiotracer biological half-life (Tb1/2) of 44 ± 12 and 55 ± 16 days at pH 8.08 and 7.54, respectively. During the whole exposure period, approximately half of the i203Hg was found in the gills, but i203Hg also increased in the digestive gland. When fed with 203Hg-radiolabelled prey, cuttlefish assimilated almost all the Hg provided (>95%) independently of the prey type. Nevertheless, the prey type played a major role on the depuration kinetics with Hg Tb1/2 approaching infinity in fish fed cuttlefish vs. 25 days in shrimp fed cuttlefish. Such a difference is explained by the different proportion of Hg species in the prey, with fish prey containing more than 80% of MeHg vs. only 30% in shrimp. Four days after ingestion of radiolabelled food, iHg was primarily found in the digestive organs while MeHg was transferred towards the muscular tissues. No significant effect of pH/pCO2 variation was observed during both the waterborne and dietary exposures on the bioaccumulation kinetics and tissue distribution of i203Hg and Me203Hg. Dietary exposure is the predominant pathway of Hg bioaccumulation in juvenile cuttlefish.


Mercury , Methylmercury Compounds , Sepia , Water Pollutants, Chemical , Animals , Bioaccumulation , Carbon Dioxide , Decapodiformes/metabolism , Fishes/metabolism , Food Chain , Hydrogen-Ion Concentration , Mercury/analysis , Methylmercury Compounds/analysis , Oceans and Seas , Seawater , Sepia/chemistry , Sepia/metabolism , Water Pollutants, Chemical/analysis
8.
Aquat Toxicol ; 250: 106235, 2022 Sep.
Article En | MEDLINE | ID: mdl-35944346

The fate and toxicity of ingested marine microplastics (MPs) have been of major concern in aquatic ecotoxicology for the last decade. Although their ingestion by a wide range of marine organisms has been proven, the uptake of MPs within organs is not yet fully understood and relies on the ability of ingested microplastics to transfer from the gut to tissues beyond the digestive wall (i.e., translocation). The present study investigates the in vitro transfer of fluorescent high-density polyethylene particles of different sizes classes (1-5 µm; 10-29 µm; 38-45 µm) across the intestinal wall of the sea urchin Paracentrotus lividus using Ussing chambers. Small microplastics (1-5 µm) were proven to be able to cross the intestinal wall of P. lividus and reach the coelomic fluid, while larger microplastics (≥ 10 µm) were not observed to cross the intestinal wall. Results demonstrate a size-dependent passage of polyethylene microparticles across the intestinal walls of P. lividus for the first time, highlighting the suitability of Ussing chamber systems to study the transfer of MPs across the intestinal wall of animals.


Paracentrotus , Water Pollutants, Chemical , Animals , Microplastics , Plastics , Polyethylene , Water Pollutants, Chemical/toxicity
9.
Mol Cell Endocrinol ; 555: 111727, 2022 09 15.
Article En | MEDLINE | ID: mdl-35863654

Fish development and acclimation to environmental conditions are strongly mediated by the hormonal endocrine system. In environments contaminated by anthropogenic stressors, hormonal pathway alterations can be detrimental for growth, survival, fitness, and at a larger scale for population maintenance. In the context of increasingly contaminated marine environments worldwide, numerous laboratory studies have confirmed the effect of one or a combination of pollutants on fish hormonal systems. However, this has not been confirmed in situ. In this review, we explore the body of knowledge related to the influence of anthropogenic stressors disrupting fish endocrine systems, recent advances (focusing on thyroid hormones and stress hormones such as cortisol), and potential research perspectives. Through this review, we highlight how harbours can be used as "in situ laboratories" given the variety of anthropogenic stressors (such as plastic, chemical, sound, light pollution, and invasive species) that can be simultaneously investigated in harbours over long periods of time.


Anthropogenic Effects , Water Pollutants, Chemical , Animals , Endocrine System , Environmental Monitoring , Fishes , Hormones , Thyroid Hormones
10.
Mar Pollut Bull ; 178: 113552, 2022 May.
Article En | MEDLINE | ID: mdl-35339865

Ocean acidification has emerged as a major concern in the last fifteen years and studies on the impacts of seawater acidification on marine organisms have multiplied accordingly. This review aimed at synthesizing the literature on the effects of seawater acidification on tropical scleractinians under laboratory-controlled conditions. We identified 141 articles (published between 1999 and 2021) and separated endpoints into 22 biological categories to identify global trends for mitigation and gaps in knowledge and research priorities for future investigators. The relative number of affected endpoints increased with pH intensity (particularly for endpoints associated to calcification and reproduction). When exposed to pH 7.6-7.8 (compared to higher pH), 49% of endpoints were affected. The diversity in experimental designs prevented deciphering the modulating role of coral life stages, genera or duration of exposure. Finally, important bias in research efforts included most experiments on adult corals (68.5%), in 27 out of 150 (18%) coral ecoregions and exclusively from shallow-waters.


Anthozoa , Animals , Anthozoa/chemistry , Calcification, Physiologic , Coral Reefs , Hydrogen-Ion Concentration , Seawater/chemistry
11.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article En | MEDLINE | ID: mdl-35165193

Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals.


Rivers/chemistry , Water Pollution, Chemical/analysis , Water Pollution, Chemical/prevention & control , Ecosystem , Environmental Exposure , Environmental Monitoring , Humans , Pharmaceutical Preparations , Wastewater/analysis , Wastewater/chemistry , Water/analysis , Water/chemistry , Water Pollutants, Chemical/analysis
12.
Aquat Toxicol ; 241: 106004, 2021 Dec.
Article En | MEDLINE | ID: mdl-34739976

Plastic pollution has become a major environmental and societal concern in the last decade. From larger debris to microplastics (MP), this pollution is ubiquitous and particularly affects aquatic ecosystems. MP can be directly or inadvertently ingested by organisms, transferred along the trophic chain, and sometimes translocated into tissues. However, the impacts of such MP exposure on organisms' biological functions are yet to be fully understood. Here, we used a multi-diagnostic approach at multiple levels of biological organization (from atoms to organisms) to determine how MP affect the biology of a marine fish, the gilthead seabream, Sparus aurata. We exposed juvenile seabreams for 35 days to spherical 10-20 µm polyethylene primary MP through food (Artemia salina pre-exposed to MP) at a concentration of 5 ± 1 µg of MP per gram of fish per day. MP-exposed fish experienced higher mortality, increased abundance of several brain and liver primary metabolites, hepatic and intestinal histological defects, higher assimilation of an essential element (Zn), and lower assimilation of a non-essential element (Ag). In contrast, growth and muscle C/N isotopic profiles were similar between control and MP-exposed fish, while variable patterns were observed for the intestinal microbiome. This comprehensive analysis of biological responses to MP exposure reveals how MP ingestion can cause negligible to profound effects in a fish species and contributes towards a better understanding of the causal mechanisms of its toxicity.


Sea Bream , Water Pollutants, Chemical , Animals , Ecosystem , Environmental Monitoring , Microplastics , Plastics/toxicity , Polyethylene/toxicity , Water Pollutants, Chemical/toxicity
13.
J Environ Radioact ; 240: 106753, 2021 Dec.
Article En | MEDLINE | ID: mdl-34619634

The partitioning coefficient, Kd, which is defined by the reversible sorption processes between a solid and an aqueous phase at equilibrium, is one of the most important parameters to assess environmental transport and risk. In this study, a series of simple laboratory experiments were conducted to investigate sorption properties of 134Cs on a model sediment under two treatments (shaken vs non-shaken) and with three (small: <75 µm, large: > 75 µm and bulk i.e., composite) particle size fractions. Vertical transport of 134Cs across the water-sediment interface and into sediment was also evaluated. As expected, grain size had the strongest influence on 134Cs Kd values, with the small particle size fraction yielding significantly higher Kd values than the large and bulk fractions. The mean Kd values obtained from the various experiments ranged from 89 ± 13-130 ± 5 L kg-1 (small), 44 ± 10-91 ± 13 L kg-1 (large), 73 ± 3-112 ± 11 L kg-1 (bulk, shaken) and 73 ± 5-110 ± 4 L kg-1 (bulk, non-shaken). Most of the 134Cs partitioning processes occurred rapidly (<2 h) into the experiment. Physical mixing (shaken) did not appear to significantly affect the 134Cs Kd values. In complement, a separate experiment on the vertical penetration of 134Cs into a bulk sediment column showed that 134Cs was able to penetrate up to 5 cm into the sediment column after 88 days (∼0.6 mm d-1) and this flux rate is comparable to natural settings. Adsorption and contact time were found to be key for the 134Cs penetration process. Results from these experiments add to the literature on post-event radionuclide transport studies in marine settings and provide an experimental perspective that can be built upon to complement field observations.


Radiation Monitoring , Soil Pollutants, Radioactive , Water Pollutants, Radioactive , Adsorption , Cesium Radioisotopes/analysis , Geologic Sediments , Soil Pollutants, Radioactive/analysis , Water Pollutants, Radioactive/analysis
14.
Nature ; 597(7876): 360-365, 2021 09.
Article En | MEDLINE | ID: mdl-34526707

Fish and other aquatic foods (blue foods) present an opportunity for more sustainable diets1,2. Yet comprehensive comparison has been limited due to sparse inclusion of blue foods in environmental impact studies3,4 relative to the vast diversity of production5. Here we provide standardized estimates of greenhouse gas, nitrogen, phosphorus, freshwater and land stressors for species groups covering nearly three quarters of global production. We find that across all blue foods, farmed bivalves and seaweeds generate the lowest stressors. Capture fisheries predominantly generate greenhouse gas emissions, with small pelagic fishes generating lower emissions than all fed aquaculture, but flatfish and crustaceans generating the highest. Among farmed finfish and crustaceans, silver and bighead carps have the lowest greenhouse gas, nitrogen and phosphorus emissions, but highest water use, while farmed salmon and trout use the least land and water. Finally, we model intervention scenarios and find improving feed conversion ratios reduces stressors across all fed groups, increasing fish yield reduces land and water use by up to half, and optimizing gears reduces capture fishery emissions by more than half for some groups. Collectively, our analysis identifies high-performing blue foods, highlights opportunities to improve environmental performance, advances data-poor environmental assessments, and informs sustainable diets.


Aquaculture , Ecosystem , Environmental Monitoring , Seafood , Sustainable Development , Animals , Aquaculture/trends , Climate Change , Diet , Ecology , Environmental Policy , Fisheries , Food Supply/methods , Greenhouse Gases , Humans , Mollusca , Nitrogen , Phosphorus , Seafood/supply & distribution , Seaweed , Sustainable Development/trends
15.
MethodsX ; 8: 101395, 2021.
Article En | MEDLINE | ID: mdl-34430291

One important aspect of marine plastic pollution is that small particles are ubiquitously present in seawater and can transport a large variety of co-contaminants. The sorption-desorption kinetics of these co-contaminants sorbed to microplastics (MPs) are not fully understood, partially due to the lack of any standardised procedures between studies. The present work aims at describing a new and efficient method to investigate the sorption of co-contaminants onto different types of particles using proven radiotracer techniques. This work provides recommendations as well as a thorough description of the materials, conditions and procedures required to optimise the adsorption of polychlorinated biphenyl (PCB) onto particles. Details of the controlled experimental conditions, such as the volume of the container, the concentration of particles, and specifics of the radiotracer are provided. In addition, a thorough description of the novel filtration methodology specific to these radiotracer techniques is presented, for the first time in the literature. To validate the efficiency of the method, we examined the partition coefficients (Kd) of ¹4C-PCB#153 onto virgin MP (10-29 µm polyethylene beads) and onto natural sediment particles that are similarly sized (1-17.8 µm) in seawater. After 40 h, plastic particles adsorbed 25.7% of ¹4C-PCB#153 while sediment particles adsorbed 89.3% of the same compound. Results suggest that in this scenario, polyethylene MP particles may be less effective transport vectors of ¹4C-PCB#153 than natural sediment particles.•Details of experimental conditions, such as the volume of the container, and the concentration of particles and of radiotracer, were defined•A thorough description of the filtration methodology specific to radiotracer techniques is presented•Results highlight that virgin polyethylene MPs may be less effective transport vectors of ¹4C-PCB#153 than natural sediment particles.

16.
Environ Pollut ; 288: 117786, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34284207

The widespread decline in oceanic dissolved oxygen (DO), known as deoxygenation, is a threat to many marine ecosystems, and fish are considered one of the more vulnerable marine organisms. While food intake and growth rates in some fish can be reduced under hypoxic conditions (DO ~ 60 µmol kg-1), the dietary transfer of essential metals remains unclear. In this context, we investigated the influence of DO on the dietary acquisition of two essential metals (Zn and Mn) in the commercially important gilthead seabream (Sparus aurata) using radiotracer techniques. Fish were exposed to variable DO conditions (normoxia 100% DO, mild-hypoxia 60% DO, and hypoxia 30% DO), and fed a single radiolabeled food ration containing known activities of 54Mn and 65Zn. Depuration and assimilation mechanisms under these conditions were followed for 19 d. Based on whole body activity after the radio-feeding, food consumption tended to decrease with decreasing oxygen, which likely caused the significantly reduced growth (- 25%) observed at 30% DO after 19 d. While there was an apparent reduction in food consumption with decreasing DO, there was also significantly higher essential metal assimilation with hypoxic conditions. The proportion of 65Zn remaining was significantly higher (~60%) at both low DO levels after 24 h and 19 d while 54Mn was only significantly higher (27%) at the lowest DO after 19 d, revealing element specific effects. These results suggest that under hypoxic conditions, stressed teleost fish may allocate energy away from growth and towards other strategic processes that involve assimilation of essential metals.


Sea Bream , Trace Elements , Animals , Diet , Ecosystem , Metals
17.
Environ Sci Technol ; 55(12): 7770-7775, 2021 06 15.
Article En | MEDLINE | ID: mdl-34027665

Plastic pollution has become one of the most pressing environmental challenges and has received commensurate widespread attention. Although it is a top priority for policymakers and scientists alike, the knowledge required to guide decisions, implement mitigation actions, and assess their outcomes remains inadequate. We argue that an integrated, global monitoring system for plastic pollution is needed to provide comprehensive, harmonized data for environmental, societal, and economic assessments. The initial focus on marine ecosystems has been expanded here to include atmospheric transport and terrestrial and freshwater ecosystems. An earth-system-level plastic observation system is proposed as a hub for collecting and assessing the scale and impacts of plastic pollution across a wide array of particle sizes and ecosystems including air, land, water, and biota and to monitor progress toward ameliorating this problem. The proposed observation system strives to integrate new information and to identify pollution hotspots (i.e., production facilities, cities, roads, ports, etc.) and expands monitoring from marine environments to encompass all ecosystem types. Eventually, such a system will deliver knowledge to support public policy and corporate contributions to the relevant United Nations (UN) Sustainable Development Goals (SDGs).


Ecosystem , Plastics , Cities , Environmental Monitoring , Environmental Pollution , Policy
19.
Mar Environ Res ; 163: 105200, 2021 Jan.
Article En | MEDLINE | ID: mdl-33248410

Coral reef ecosystems are declining at an alarming rate. Increasing seawater temperatures and occurrence of extreme warming events can impair sexual reproduction in reef-building corals and inhibit the ability for coral communities to replenish and persist. Here, we investigated the role of photophysiology on the reproductive ecology of Pocillopora acuta coral colonies by focusing on the impacts of bleaching susceptibility of parents on reproduction and larval performance, during an El Niño Southern Oscillation event in Mo'orea, French Polynesia. Elevated temperature conditions at that time induced bleaching phenotypic differences among P. acuta individuals: certain colonies became pale (from the loss of pigments and/or decline in symbiont cell density), while others remained pigmented (normal/high symbiont cell density). More specifically, we studied the impact of parental phenotypes on offspring's fluorescence by counting released larvae and sorting them by fluorescence types, we assessed survival to thermal stress, recruitment success and post-recruitment survival of released larvae from each fluorescent phenotype, during summer months (February to April 2016). Our results showed that red and green fluorescent larvae released by P. acuta had distinct physiological performances: red fluorescent larvae exhibited a higher survival into the pelagic phase regardless temperature conditions, with lower capacity to settle and survive post-recruitment, compared to green larvae that settle within a short period. Interestingly, pale colonies released two-to seven-fold more red fluorescent larvae than pigmented colonies did. In the light of our results, photophysiological profiles of the brooding P. acuta parental colonies may modulate the fluorescence features of released larvae, and thus influence the dispersal strategy of their offspring, the green fluorescent larval phenotypes being more performant in the benthic than pelagic phase.


Anthozoa , Animals , Coral Reefs , Ecosystem , Fluorescence , Larva , Polynesia
20.
J Hazard Mater ; 408: 124453, 2021 04 15.
Article En | MEDLINE | ID: mdl-33168318

Crab has been designated by the ICRP as one of twelve reference/model organisms for understanding the impacts of radionuclide releases on the biosphere. However, radionuclide-crab interaction data are sparse compared with other reference organisms (e.g. deer, earthworm). This study used an estuarine crab (Paragrapsus laevis) to investigate the contribution of water, diet and sediment sources to radionuclide (134Cs and 85Sr) bioaccumulation kinetics using live-animal radiotracing. The distribution of each radionuclide within the crab tissues was determined using dissection, whole-body autoradiography and synchrotron X-ray Fluorescence Microscopy (XFM). When moulting occurred during exposure, it caused significant increases in 85Sr bioaccumulation and efflux of 134Cs under constant aqueous exposure. Dietary assimilation efficiencies were determined as 55 ± 1% for 134Cs and 49 ± 3% for 85Sr. 85Sr concentrated in gonads more than other organs, resulting in proportionally greater radiation dose to the reproductive organs and requires further investigation. 134Cs was found in most soft tissues and was closely associated with S and K. Biodynamic modelling suggested that diet accounted for 90-97% of whole-body 137Cs, while water accounted for 59-81% of 90Sr. Our new data on crab, as a representative invertebrate, improves understanding of the impacts of planned or accidental releases of fission radionuclides on marine ecology.


Brachyura , Deer , Water Pollutants, Radioactive , Animals , Bioaccumulation , Cesium Radioisotopes , Kinetics , Water Pollutants, Radioactive/analysis
...